On a Metric Affine Manifold with Several Orthogonal Complementary Distributions
نویسندگان
چکیده
A Riemannian manifold endowed with k>2 orthogonal complementary distributions (called here an almost multi-product structure) appears in such topics as multiply twisted or warped products and the webs nets composed of foliations. In this article, we define mixed scalar curvature structure a linear connection, represent kind using fundamental tensors divergence geometrically interesting vector field. Using formula, prove decomposition non-existence theorems integral formulas that generalize results (for k=2) on product manifolds Levi-Civita connection. Some our are illustrated by examples statistical semi-symmetric connections.
منابع مشابه
Some vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملOrthogonal metric space and convex contractions
In this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath might be called their definitive versions. Also, we show that there are examples which show that our main theorems are genuine generalizations of Theorem 3.1 and 3.2 of [M.A. Miandaragh, M. Postolache and S. Rezapour, {it Approximate fixed points of generalized convex contractions}, Fixed Poi...
متن کاملsome vector fields on a riemannian manifold with semi-symmetric metric connection
in the first part of this paper, some theorems are given for a riemannian manifold with semi-symmetric metric connection. in the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. we obtain some properties of this manifold having the vectors mentioned above.
متن کاملOn hypersurfaces in a locally affine Riemannian Banach manifold II
In our previous work (2002), we proved that an essential second-order hypersurface in an infinite-dimensional locally affine Riemannian Banach manifold is a Riemannian manifold of constant nonzero curvature. In this note, we prove the converse; in other words, we prove that a hypersurface of constant nonzero Riemannian curvature in a locally affine (flat) semiRiemannian Banach space is an essen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9030229